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The present study of the pressure fluctuations in the interaction region of a 
two-dimensional compression flow established that the frequency of the shock-wave 
unsteadiness is of the same order as the bursting frequency of the upstream boundary 
layer and that this frequency is independent of the downstream separated flow. The 
conditional-sampling technique developed herein is capable of separating phenomena 
due to shock-wave oscillations from those due to transport phenomena of turbulence. 
The results show that turbulence as inferred from wall-pressure fluctuations may be 
significantly amplified approaching the shock. 

1. Introduction 
Although shock-wave/turbulent-boundary-layer interactions have been a subject 

of considerable research in the past, many physical features are still not well 
understood. One of these little-understood features is the large-scale oscillation of the 
shock system, particularly when the flow is separated. By large scale, we imply that 
the spatial excursion of the shock front can extend a significant fraction of the 
boundary-layer thickness. These oscillations can exert significant consequences on the 
aerodynamic load on high-speed aircraft structures and on local heat-transfer rates, 
and they are apparently related to the ‘upstream influence’ of the interaction. A 
detailed understanding of these unsteady phenomena is therefore of practical and 
fundamental importance. 

Oscillation of the shock system can occur in a variety of high-speed flows, such as 
over forward-facing steps and compression ramps, and past blunt fins and protu- 
berances. The unsteadiness in each case shares some common statistical features. This 
observation was noted by early workers (Bogdonoff 1955; Price & Stalling 1967; 
Kaufman, Korkegi & Morton 1972 ; and Winkelmann 1972), albeit qualitatively. 
Kistler (1964) was probably the first to make fairly detailed high-frequency measure- 
ments of such unsteadiness, providing valuable quantitative data. His measure- 
ments using high-frequency surface pressure transducers in supersonic turbulent 
boundary layers over a forward-facing step showed that near the mean separation 
line there exist low-frequency pressure fluctuations with large amplitudes. The 
wall-pressure signal assumed a distinct ‘on-off’ character which he modelled as a 
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‘box-car’ function. Coe (1969), and more recently Dolling & Murphy (1982), Dolling 
& Or (1983) and Muck, Dussauge & Bogdonoff (1985), also measured the fluctuating 
wall pressure in the interaction regions of compression-ramp flow fields. Their results, 
although obtained in different flow geometries, exhibited statistical properties that 
were qualitatively similar to those reported by Kistler (1964). 

These studies clearly established the grossly unsteady nature of the shock system 
in a wide range of flows. The instantaneous structure of the shock system is noted 
to be very different from that of the time-average picture, Muck et al. (1985). Beyond 
that very little is known about the dominant mechanisms driving the unsteadiness. 
Meaningful scaling parameters are sought but have yet to be identified. The present 
contribution addresses this need, using multi-channel recording of the fluctuating 
wall pressure in the interaction region upstream of an unswept separated compression- 
ramp flow field at about Mach 2.9. Two possible mechanisms have been proposed to 
explain the shock-wave oscillation: the first is the turbulence of the incoming 
boundary layer (Plotkin 1975); and the second is that the separated shear layer 
amplifies the small frequencies of the bubble motion, which are felt upstream owing 
to a feedback mechanism through the large subsonic region of the separated zone. 
Since the observed or suspected frequency of the shock-wave oscillation was several 
times smaller than the typical characteristic frequency U,/8 ,  of the incoming 
boundary layer the first mechanism has been excluded as a possible explanation of 
this oscillation (Dolling & Murphy 1982). 

In the present investigation the nature of the unsteadiness of the shock system has 
been further studied, in detail, and some views which have been put forward by past 
workers are re-addressed. The present results show for the first time that the 
frequency of the shock-system unsteadiness scales on the bursting frequency of the 
incoming boundary layer. This finding strongly suggests that the turbulence within 
the incoming boundary layer plays a dominant role in triggering the shock-wave 
unsteadiness. Results and arguments are presented in support of the foregoing 
conclusion. 

Detailed analysis of the probability-density functions of the frequency and the 
velocity of the motion of the shock system reveals that the mean values are 
significantly different from the most probable values. The spanwise cross-correlation 
measurements of the pressure fluctuations show that the flow is considerably 
asymmetric, even well upstream of the mean separation line. This may suggest the 
existence of Taylor-Gortler vortices which are usually present in boundary-layer type 
of flows over concavely curved walls. 

Section 2 describes the experimental set-up. A detailed description of a unique 
conditional-sampling technique to detect the frequency and the velocity of shock- 
wave oscillations is given in $3. The results are presented and discussed in $4. Further 
discussion on a descriptive model of the flow and the salient conclusions are 
summarized in $5. Finally, some results on the sensitivity of the present conditional- 
sampling algorithm to the threshold settings are presented in the Appendix. 

2. Experimental techniques 
2.1. Wind tunnel and model 

The tests were performed in the Princeton University 203 x 203 mm high-Reynolds- 
number blowdown tunnel. The model was mounted on the tunnel floor (see figure 1) 
approximately 107 cm downstream of the nozzle exit plane. The incoming free- 
stream Mach number was nominally 2.9. The stagnation pressure for all tests was 
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FIGURE 1. Sketch of the two-dimensional-ramp model. 

M, = 2.84k0.03 
Urn = 575& 15 m/s 
6, = 24f2 mm 
6: = 6.4f0.2 mm 
0, = 1.3f0.1 mm 
Pw, = 2.4 x 104f 3 yo Pa 

Cf = 0.001 f0.00015 

TABLE 1. Mean flow parameters of the incoming undisturbed boundary layer 

6.8 x lo5 N mP2 f 1 % and the stagnation temperature was 265 K f 5 % giving a 
nominal free-stream unit Reynolds number of 6.5 x lo7 m-l. The wall condition was 
approximately adiabatic. 

Three different, two-dimensional ramps were used, with angles of 24', 20' and 16'. 
A 2.5 cm gap on either side of the model allowed passage of the sidewall boundary 
layers. To further isolate the interaction from sidewall interference and to prevent 
flow spillage from the sides, side fences were used (see figure 1). Judging from the 
surface oil traces the flow was deemed essentially two-dimensional with minor 
three-dimensional perturbations (Settles 1975), and the mean flow parameters of 
the incoming boundary layer at some upstream undisturbed position are given in 
table 1. 

Measurements upstream of the corner, but within the interaction zone, were made 
using four miniature Kulite pressure transducers installed in a cylindrical plug (see 
figure 1). This plug was fitted flush with the tunnel wall and the transducer array 
could be aligned either in the streamwise or the spanwise direction. The minimum 
spacing between adjacent transducers was x 5.08 mm (this is restricted by physical 
limitations). To vary the relative distance the ramp was moved relative to the 
transducers and, over the range of travel (6 cm), 6, changed by approximately 
0.6 mm, which has a negligible effect on the flow field. 
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More details about the pressure transducer’s performance in terms of frequency 

response and spatial resolution are given by Muck et al. (1985), and Dussauge, Muck 
& Andreopoulos (1985). It appears that the present transducer diameter is about 
300 times the viscous length v /U7,  which is expected to introduce errors in the 
measurements of contributions by the small scales. However, since we are primarily 
interested in the analysis of the large-scale low-frequency unsteadiness associated 
with the oscillations of the shock system, whose characteristic frequency is typically 
0.1Um/6, where the typical frequency of the incoming boundary layer is 
U,/S, = 24 kHz, this restriction is then not too severe. 

2.2. Digital data acquisition and experimental uncertainties 
The wall-pressure gauges used were Kulite differential transducers (Model 
XCQ-062-25-D) referenced to vacuum. Each gauge had a 0.071 cm diameter silicon 
diaphragm in which a fully active Wheatstone bridge was atomically bonded. The 
natural frequency (quoted by the manufacturer) was approximately 500 kHz. They 
were calibrated statically at the operating condition, ensuring that the wall tem- 
perature was about the same as that during the actual tests. Shock-tube tests have 
shown that transducers of this type have dynamic calibrations only a few percent 
lower than those obtained statically. The Kulite transducers have a maximum 
combined nonlinearity and hysteresis of 1 yo full scale and repeatability of 0.25 % full 
scale. The transducer signal was amplified, filtered, and sampled digitally at  100 kHz 
per channel. The Preston GMAD-1 A/D converter uses twelve bits plus sign providing 
4096 counts for the 0-10 V range. Sampling frequencies of 50 kHz, 20 kHz, 10 kHz 
and 5 kHz were also used in the present measurements to capture the low-frequency 
end of the power spectrum. Data were taken in files of N records, each consisting of 
1024 pressure measurements. 

Convergence in the values of the mean wall pressure P, and the r.m.s. pressure, 
p’2 were achieved for N < 200 in all cases. In the incoming boundary layer, P, was 
of the order of 3.4 p.s.i. When amplified, it gave typically 5-7 V output and that gave 
an estimated theoretical resolution of at least 0.0008 p.s.i. The overall noise level was 
estimated to be about 0.003 p.s.i. and that resulted in an overall system uncertainty 
of 0.0038 p.s.i. 

3. Conditional-sampling analysis and zone statistics 
The wall-pressure signal has been simulated as an ‘on-off’ function with a proper 

conditioning criterion based on its instantaneous level and its time derivative. 
According to this model if either the instantaneous wall pressure or its derivative is 
above prescribed threshold values, then the shock is deemed upstream of the pressure 
tap. Correspondingly, where the pressure level or its derivative is below these 
threshold values, the shock is considered to have progressed downstream, This 
treatment is based on the highly intermittent character of the pressure signal which 
jumps between the upstream level and the downstream level. 

According to the above description the intermittency function I can be defined as 
follows : - 

1 ifp 2 Th, or- dP 2 Th,, 
at I =  

0 otherwise, 

where Th, and Th, are two different thresholds. 
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Zero line 01 

FIGURE 2. Typical pressure signal in the interactiop region. C_onventional and zone-averages: OA, 
mean value &; OB, mean value of the downstream zone &; AC, fluctuation about Q,q; BC, 
fluctuation about Qd, 9“. 

The first derivative is used mainly as a back-up criterion. The values of the present 
thresholds have been selected by carefully observing the signal itself, rather than 
selecting the free-stream values as was done by Dolling & Murphy (1982). The 
rationale for not adopting the method of Dolling & Murphy is that any small d.c. 
offset can readily produce unrealistic results. 

If Q is any function of a pressure fluctuation of the form pn ,  where n is an integer, 
then the contribution of the ‘zones’ upstream or downstream of the shock wave are 
defined as follows: 

(1) 

Following these definitions, the contributions by the two ‘zones’ can be summed to 
give the conventional average 

- to+T 
Q = lim &(z,t)dt, 

T*CC t o  
(3) 

- -  
with Qu+Qd = g. (4) 

If the time-averaging is done over the time of the zone duration then the new 
averages iju and i& are related to the Gu and gd through the following relations: 

where y is the mean value of the intermittency I. All the above-mentioned quantities 
are referred to fluctuations about the conventional long-time average (see figure 2). 
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FIQURE 3. (a, b)  Typical traces of the instantaneous pressure signal, its time derivative and of 
the intermittency and its derivative. 
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FIQURE 4. Definition of the period of one cycle of the shock-wave movement. 

For fluctuations about the zone average Qt (i can be the upstream or downstream 
zone) the following relations are valid: 

Qr = gt+Q with & = 0, Qg = Gi, 
where Qt is the instantaneous quantity which is decomposed to a zonal mean (& and 
a fluctuation &. The tilde refers to zonal quantities. The same quantity Qi can be 
decomposed about the conventional average Q :  

Qi = Q+qi, 
- with 

These relations lead to the following expression between zone and conventional 
averages of the square fluctuations : 

qr = &*-& = &Q. 

@ = 8- (i&Q)? ( 5 )  

Figure 3 (a, b) shows some typical traces from plottings of the instantaneous pressure 
signal and its derivative together with the intermittency function I and its derivative. 
A positive d.Z/dt indicates upstream motion of the shock-wave front while a negative 
dI/dt  indicates a downstream movement. This shock-wave unsteadiness can be 
characterized by its frequency and the velocity magnitude. 

Based on the above modelling of the pressure signal the duration of one cycle, 
i.e. the period T( of the shock-wave motion, can be defined aa is shown in figure 4. 
If Ti is the period of the event i then the frequency is Z$ = l/T(. As will be discussed 
later this frequency is not the zero-crossing frequency. 

The values of the thresholds were arbitrarily selected to be just greater than the 
noise level or the free-stream fluctuation level. The sensitivity of the algorithm which 
determines the accuracy of the present results is discussed in the Appendix. 

It is obvious that the algorithm operates very much like a band-pass filter; as the 
threshold settings get smaller, more of the higher frequency pressure fluctuations are 
taken into account. On the other hand, using larger threshold values will miss the 
higher frequencies. 

It is worth mentioning that the power spectra of the wall-pressure fluctuations do 
not show any significant peak in any frequency window. Figure 5 shows such spectra 
at different locations with respect to the corner line. These power spectra appear to 
be broadband and show little indication of a frequency peak. 

According to Dussauge et al. (1985) two distinct phenomena are present in this 
class of flow : oscillating phenomenon due to the shock-wave motion, and transport 
phenomena due to the dynamics of the flow. The former phenomenon is expected to 
give rise to  an appreciable peak in the power spectra which roughly corresponds to  
the characteristic frequency of the shock-wave oscillation. But the fact that there 
is no appreciable peak in the power spectra implies that the amplitude of the 
shock-wave oscillation is masked by turbulence and therefore it cannot be easily 

FLY 180 14 
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determined from the spectra. In other words the oscillation itself has some broadband 
oharacteristics with significant jitter. The present conditional-sampling analysis 
however, allows a direct determination of the frequency of this oscillation. 

The velocity of the shock-wave movement in the longitudinal direction has also 
been obtained by measuring the difference in the time of arrival at two neighbouring 
transducers, as shown in Agure 6. If Ax is the spacing between the two transducers 
then two velocities can be defined depending on the upstream or downstream 
movement of the shock wave: 

Ax Ax  u = -  u = - - .  
At,' Atd 

From the above definitions it is clear that an 'instantaneous convection' velocity 
can be determined from the time traces of the pressure signal. The distance Ax is fixed 
by the spacing of the transducer to be 0.236, where the minimum resolution of Atu 
is one sampling time interval 0.01 ms, which is equivalent to O.246,/Uw. Therefore 
in the cases of extremely small At, (of the order of 0.01 ms) an ambiguity of U, of 
the order of 0.96U, may be present. In  other words, the error in measuring high 
values of Uu is of the order of U ,  or more, while it is much smaller in cases where 
lJu is smaller than 27,. 
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FIQVRE 7. Intermittency profile for the 24' corner (curve a), the 20" corner (curve b) ,  and the 16" 
corner (curve c) : 0, data filtered at 60 kHz and digitized at 100 kHz ; 0, data filtered at 10 kHz 
and digitized at 20 kHz; 0, data filtered at 5 kHz and digitized at 10 kHz; x , data of Dolling 
& Or (1983). 

4. Results 
4.1. Indemittency projles 

Figure 7 shows the profiles of the mean value of the intermittency function, hereinafter 
referred to as intermittency, for the three different ramp angles investigated here, 
as a function of the distance from the corner line. Results for the filtered data are 
also shown. In  general the greater the amount of low-pass filtering, the higher will 
be the measured intermittency. The small-scale events are rejected by low-pass 
filtering, giving the results a 'wholesale' character, in the sense used by Murlis, Tsai 
& Bradshaw (1982). Physically the intermittency profiles shown here indicate the 
probability of finding fluid that has already gone through the strong interaction, i.e. 
y = 0.75 means that there is a 75 % probability that a lump of fluid at that position 
has passed the interaction, while y = 0.25 means that there is a 25% probability of 
finding a lump of fluid that has already gone through the strong interaction. The 
results of Dolling & Or (1983) are also plotted on figure 7 for comparison with the 
present ones. Although both sets of data were obtained in the same facility using 
the same transducers, discrepancies in the results are seen, particularly in the 24" and 
20" ramps. Similar discrepancies are present in the distribution of the wall-pressure 
fluctuation shown in figure 8 (curve a). There are three contributory factors that may 
lead to differences in the results. First, the difference in the intermittency may be 
a 'follow-up ' result since there is a significant difference in the distribution of pressure 
fluctuations. Secondly, Dolling & Or (1983) used different values of 8, for non- 
dimensionalizing the distance 2. They used 22 mm as a value of 6, while a value of 
25 mm has been used in the present analysis. If S, = 22 mm were used here it would 
in fact make the disagreement worse. Thirdly, they used a different algorithm in their 
analysis with different threshold settings. As indicated in the Appendix the third 
reason seems to be the most probable explanation of the above-mentioned differences. 
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FIQURE 8. Conditionally sampled wall-pressure fluctuations for the 24" corner (curve a), the 20' 
corner (curve b )  and the 16" corner (curve c): A, (averages for the upstream of the shock-wave 
zone); A, (averages for the downstream of shock-wave zone); 0, conventional averages; +, 
measurements of Dolling & Or (1983). 

4.2. Zone averages 
The contributions to the total wall-pressure fluctuations by the zones upstream and 
downstream of the shock wave are shown in figure 8 for the three aforementioned 
ramp flows. The quantities plotted in this figure are referred to pressure fluctuations 
about the conventional mean. This allows (4) to be applied: 

- -  
p;z+p;z = p12. 

It is worthwhile discussing in more detail the physical meaning of the zones 
upstream or downstream of the shock. As mentioned earlier, fluid in the downstream 
zone has already passed through the strong interaction while fluid that is in the 
upstream zone is yet to pass through the interaction, although it may have already 
felt the presence of a shock wave further upstream. Figure 8 shows the effect of a 
lump of fluid going through the interaction; its contribution starts to become 
significant much later than the conventional p'a starts to increase, reaching a 
maximum value at around the same location as the peak of the conventional p, and 
then decreases rapidly. It is interesting to see that this zone does not retain its 
upstream value through the interaction but first increases and then drops. This 
indicates that the upstream fluid may be distorted through the interaction before it 
is completely integrated, meaning that it has passed through the shock wave. The 
contributions of the downstream zone show some interesting behaviour too; they 
behave very similarly to the conventional values in the beginning and at the end of 
the interaction. This is somewhat surprising because at the beginning of the 
interaction we expect greater contributions to the conventional values by the zone 
upstream of the shock than that by the zone downstream of the shock. The figures 
clearly show that the contrary is the case, with the contributions by the downstream 
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zone being greater than those of the upstream zone. However, this can be explained 
in terms of the oscillation of the shock wave, which produces high rises or jumps on 
the pressure fluctuation. Therefore the fluctuations as well as the conventional 
ones p'e are not entirely due to turbulence, i.e. to transport mechanisms, but rather 
the shock wave oscillating back and forth, and thereby introducing 'apparent ' 
fluctuations. Further downstream in the interaction region the direct effect of this 
oscillation disappears and the contribution almost coincides with the conventional 
values. 

A comparison between curves (a) ,  ( a )  and ( c )  of figure 8 reveals that the maximum 
value of decreases with the ramp angle, i.e. the distortion of the upstream fluid 
before it passes through the shock waves is smaller at smaller shock strengths. 

4.3. Shock-wave motion 
Probability-density functions were calculated from the periods T, and the frequencies 
I( of the shock-wave motion obtained from the conditional-sampling algorithm 
previously described. Figure 9 (a-c) shows the probability-density functions of the 
periods (p.d.f.),, for the three angles 24O, 20' and 16Orespectively. These distributions 
are highly skewed with long tails; it  is obvious that the most probable values are 
significantly different from the mean values. There are some important characteristics 
in these plots. First, the most probable values and the mean values seem to  be 
independent of the position with respect to the apex of the corner within the present 
experimental resolution and accuracy. Secondly, these quantities seem to be also 
independent of the ramp angle, i.e. independent of the shock strength. The reader 
is reminded that the flow structure is radically different in the three cases. In  the 
case of the 16" corner, for example, there is only incipient separation. This is an 
important conclusion of the present study, showing that the shock-wave motion is 
not strongly dependent on the downstream structure of the flow, i.e. on the separated 
region which changes with the angle of the ramp. The shock-wave motion seems to 
scale on some parameters that are invariant for the three different experiments. This 
appears to  be the incoming boundary layer, which was the same in all three cases. 
Outer-layer variables Urn and 6, were chosen to non-dimensionalize frequencies or 
periods. The present results show a value of 0.916,/Um for the most probable value 
of the periods of the shock-wave motion and a value of 7.666,/Um for the mean. 

The distributions of the frequency FTt  = 1/T, are plotted in figure lO(a-c). These 
distributions are also skewed with long tails but, as stated in the Appendix, are much 
more sensitive to the threshold settings. This may explain the 14 % difference between 
the mean values of the distributions at two different positions of the flow field on 
the same corner flow. Apart from that these mean values are not the inverse of the 
means of the distributions of periods, i.e. =I= l/T,. This is not surprising since l$ and 
Ti are not coupled linearly. In fact the two probability density functions are related 
as 

The zero-crossing frequencyf, of the fluctuating part of the signal is another quantity 
that is used very frequently. It appears that f, = l/p. The present result shows 
that the non-dimensional zero-crossing frequency is of the order of 0.130. This 
value compares favourably with the bursting frequency of subsonic and supersonic 
boundary layers (see Willmarth & Sharma 1984; Andreopoulos et al. (1984); and 
Spina & Smits (1986)). This finding supports the suggestion that the shock-wave 
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FIQURE 9(a, a). For caption see facing page. 
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FIQURE 9. Probability-density functions for the periods of the shock-wave oscillation for (a) 
the 24" corner; 0,  x / 6 ,  = -2.41; @, x/S, = -2.18; ( b )  the 20" corner: A, x/8, =-1.15; A, 
x/6, = -0.99; and (e) the 16" corner: 0, x/S, = -0.31 ; ., x / 6 ,  = -0.38. Arrows indicate mean 
values. 

motion may be triggered by the turbulence of the incoming boundary layer rather 
than driven by the shear layer formed over the separated region and the recirculating 
region. This conclusion contradicts previous speculations by Dolling & Murphy (1982) 
that the turbulence of the incoming boundary layer is not a likely cause of the 
shock-wave unsteadiness. The present evidence and the fact that this non-dimensional 
crossing frequency was found to be the same in the three experiments with different 
corners, where the flow structure in the separated region was different, could strongly 
support the conclusion that turbulence within the incoming boundary layer is the 
dominant mechanism in triggering the shock-wave oscillation. 

Figures 11 and 12 demonstrate the effect of low-pass filtering or varying sampling 
rates on the probability-density functions of T and P respectively. The smaller the 
cut-off frequency, the higher the mean period and the lower the mean frequency. At 
the same time the shape of these p.d.f.s changes drastically. The p.d.f. of T, tends 
to become very flat while that of F, becomes very spiky. 

Figure 13 gives a rough indication of the p.d.f. of the velocity of the shock-wave 
motion. Numerous time-history records have been studied to identify patterns like 
that of figure 6 in order to deduce this velocity with little ambiguity. Despite the 
extensive search only 65 samples could be identified fulfilling the conditions of the 
idealized picture of figure 6. Because of the relatively small number of samples 
the scatter is large but still clearly shows that this velocity can vary from O.O5U, to 
0.8U, with the values around 0.15U, being the mean. These values of the velocity 
of the shock-wave motion are of the order of the velocity fluctuations of the flow field. 
This represents further evidence that the turbulence of the incoming boundary layer 
is largely responsible for the shock-wave motion. 

Figure 14 shows evidence of the three-dimensionality of the interaction. Note that 
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the incoming boundary layer is nominally two-dimensional. The three-dimensional 
character of the time-dependent flow in the spanwise direction has already been 
demonstrated in the multi-channel instantaneous pressure signals of Muck et al. 
(1985). The present results revealed that not only the time-dependent flow field is 
three-dimensional but the time-averaged flow is also three-dimensional. In figure 14 
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the departure of the intermittency from its value along the centreline is shown for 
the 24' case. If the time-averaged flow were two-dimensional Ay should be equal to 
zero. The fact that Ay is strongly antisymmetric, together with the spanwise 
non-uniformities of the surface-oil visualizations given by Settles, Fitzpatrick & 
Bogdonoff (1979), and the fact that the streamline curvature is unstably curved 
suggest that Taylor-Gortler type of vortices may develop in the interaction region 
of the flow. This will undoubtedly bring about an additional complication to the 
already complicated flow field. 

5. Further results and discussion 
The data of figure 8 (a-c) indicated that turbulence may be distorted before it passes 

through the shock wave. In other words there is an indication of an instantaneous 
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FIGURE 13. Probability-density function of the shock-wave velocity normalized by U,  after a limited 
number of samples: 0, upstream movement; A, downstream movement. Arrows show mean 
values. 
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FIGURE 14. Spanwise distribution of the intermittency. yrel is the intermittency on the centreline; 
Ay is the departure from this value: O,x/S ,  = -2.18, 24" corner; A, x/S, = - 1.15, 20" corner; 
0, x/S, = -0.38, 16" corner. 

upstream influence of the shock wave; such a characteristic is rather unexpected in 
a supersonic flow. 

The root mean squares (r.m.5.) of the zone pressure fluctuations with respect to 
the zonal mean value have been plotted in figure 15. These quantities are 
related to the p:" and shown in figure 8( a-c) through (5 )  and they are normalized 
by the upstream value vm of the r.m.8. pressure fluctuations. The conventional 
quantity v is also plotted in figure 15. Pressure fluctuations are amplified by up to 
18.5 times through the interaction region while further downstream, behind the shock 
wave, they reach a value of 12v,. It is interesting to mention that the upstream 
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FIGURE 15. Conditionally sampled wall-pressure fluctuations (r.m.5.) about zonal mean, 
for the 20' corner: A, 5"; A, 5d; 0, conventional. 

fluctuations i?,, seem to increase with the downstream distance through the inter- 
action. At the same time, however, the probability of appearance of these events, 
which indicate an early distortion of the upstream turbulence, becomes smaller and 
smaller through the interaction region (see intermittency profiles). These results are 
referred to as a shock wave which lies somewhere downstream and whose position 
changes continuously. Although the present results are not relative to a specific 
position of the shock wave but they are a result of a time and spatial integration they 
provide some evidences of distortion of the turbulence upstream of the shock wave. 
It should be mentioned here that i?,, is more sensitive to variations in the Th, 
threshold than y or #,, : for a M) % change in Th, a 25 % increase in tu was detected 
(see the Appendix and figure 22). Despite this increased sensitivity, the results clearly 
indicate that there is some distortion of the upstream turbulence. This behaviour can 
most probably be explained as an upstream propagation of disturbances through the 
sonic layer or as an upstream propagation of the unsteady wave motion. 

5.1. TheJlow model 

A very simple model representing the present flow field is described below. This 
model is based on the above finding that the shock oscillation frequency is closely 
related to the bursting phenomenon (Kim, mine & Reynolds 1971). The'following 
assumptions have been made in constructing the model. 

(i) A strong relation is expected between the burstisweep mechanism and the 
large-scale turbulent structures (Brown & Thomas 1977), i.e. for a large structure 
there is only one cycle of the bursting phenomenon. This intimate relation has so far 
not been documented in fully developed turbulent boundary layers although it 
sounds obvious. It has been found, however, in flows relaxing after reattachment (see 
Kiya & Sasaki 1985). Kim & Moin (1986) also verified this assumption for the case 
of a low-Reynolds-number channel flow by numerically solving the full Navier-Stokes 
equations. 

(ii) There is no distortion of the upstream of the shock-wave turbulence. This 
assumption has been made to simplify the complex interaction although admittedly 
contradicts some of the present results. 
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FIGURE 16. Typical large-scale structures and the associated velocity signatures in a subsonic 
boundary layer. 

(iii) The structure of the large-scale turbulence in a supersonic boundary layer (see 
Spina & Smits 1986) is similar to that of the subsonic boundary layers. Justification 
for this assumption is based on the results of Spina & Smits (1986) who found that 
these structures are inclined roughly 45’ to the mean flow, and on the results of Owen, 
Horstman & Kussoy (1975) who indicated that the intermittency of the turbulenb 
non-turbulent interface is on average the same as that of the subsonic incompressible 
boundary layers. These findings support early speculations that strong compress- 
ibility effects are confined to regions very close to the wall. 

Figure 16 depicts idealized large-scale structures with the associated characteristic 
‘signatures ’ on the velocity field at  two different y+ positions. These velocity patterns 
have been obtained by using the VITA technique of Blackwelder & Kaplan (1976), 
the results from which have been discussed by Andreopoulos et al. (1984) for the case 
of a high-Reynolds-number boundary layer, and also by Eckelman (1979) for the 
case of channel flow. Patterns similar to  the above have been obtained by Thomas & 
Bull (1983) who used a different conditioning technique. 

Around the region BC shown in figure 17 (for y+ > 20) the irrotational free-stream 
fluid has intruded close to the wall region. This high-speed fluid generally has velocity 
(U) which is significantly below its mean value and with negative ( V )  (not shown 
here). On the back of the structure (U) reaches high values. Therefore, near the back 
of the structure longitudinal velocity changes rapidly within a very small region. This 
sudden change in velocity corresponds to non-negligible changes in Mach number, 
and since relative motions are of significance in supersonic flow, the difference in 
Mach number between B and C can cause important relative motions. Typically 
(U , )  = Uf 1 . 8 ~ ’  where u‘ is the r.m.s. value of the longitudinal fluctuations. This 
gives an estimate of 

A M N ( U C ) - ( U B )  2 ~ 2 . 8 ~ 1 * 8 U , -  
- 0.84, - - - - 

M N  U 12 u, 
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FIQURE 17. Flow model for the shock wave/boundary layer seen by an observed moving with 
the convection velocity of the large structures. 

which is an enormous variation on the local Mach number. If we assume that the 
pattern is convected downstream the temporal variation of M at a given point is 
extremely high. Since the shock-wave inclination locally depends on the local 
Mach number, which changes rapidly with time, it is therefore expected that the 
shock-wave position varies rapidly with time also. Figure 17 shows possible shock- 
wave positions for the case where the observer moves with the convection velocity 
of these structures U, = 0.827,. Then the shock wave in the external flow moves 
downstream with velocity 0.2U, and the wall moves upstream with velocity O.SU,,,. 
Oblique-shock-wave theory dictates that in the regions where the Mach number is 
small the shock wave is highly inclined with respect to the wall, while where the local 
Mach number is large the inclination is then smaller. In  the stationary frame of 
reference, the change in the shock-wave inclination brought about by the variation 
in local Mach number then gives the effect of a moving shock wave. This model is 
consistent with the finding of Muck et al. (1985) who described the intermittent region 
as composed of essentially a singZe shock front which exhibits significant spatial 
excursions. 

6. Conclusions 
The present investigation has answered some key questions relating to the driving 

mechanism of the shock oscillation. This study of the pressure fluctuations in the 
interaction region of a two-dimensional compression flow established that the 
frequency of the shock-wave unsteadiness is of the same order as the bursting 
frequency of the upstream boundary layer. The conditional-sampling technique 
developed herein is capable of separating phenomena due to shock-wave oscillations 
from those due to turbulence (which are essentially transport phenomena). The 
frequency of the shock oscillation is found to be independent of the downstream 
separated flow. Dolling & Or (1983) found that the intermittency when plotted 
against the skewness factor is independent of the downstream conditions even if the 
downstream geometry is a three-dimensional one. This, together with the present 
findings that the shock velocity is of the order of the turbulence fluctuation, suggests 
that the incoming boundary layer is the most likely cause triggering the shock-wave 
oscillation. In fact the large fluctuations of the relative motions at various positions 
of the large structures of the incoming boundary layer may cause the shock-wave 
unsteadiness and the spanwise ‘rippling’ of the shock wave. 
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FIGURE 18. Effects of threshold variations on intermittency : , Th, (level threshold) ; 
0, Th, (time-derivative threshold). 

The present analysis of the probability-density functions of the periods and 
frequencies of these oscillations have yielded useful information (similar distributions 
for subsonic boundary layers are not available). However, it is known from the work 
of Kim et al. (1971) that there is a dominant band of lengthscales or timescales rather 
than a single sharply defined value. The present quantitative results appear to verify 
this. It seems that there is a wide band of timescales associated with the burshweep 
mechanism in a boundary layer and therefore there exists a wide band of frequency 
of oscillations of the shock system. 

The present results show that the turbulence as inferred from wall-pressure 
fluctuations might be significantly amplified approaching the shock. A possible 
mechanism for this effect is the upstream propagation of the shock influence through 
the subsonic layer and/or because of the unsteady motion of the shock wave. 

It was also found that the time-average picture of the interaction region is 
three-dimensional, most probably owing to the existence of Taylol-Gortler vortices 
which are formed in the concavely curved flow. 

Finally, a simple flow model was proposed which takes into account the unsteady 
character of the incoming turbulent boundary layer and the resulting shock-wave 
oscillation. 
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Research, Grant Number 85-0126, and Air Force Office of Scientific Research, 
Contract Number F49620-84-C-0086, monitored by Drs J. McMichael and J. Wilson. 
The preparation of this paper was supported by the US Army Research Office, Grant 
DAAG29-85-K-0255. The authors would like to acknowledge useful discussions and 
comments provided by Professors A. J. Smits and S. M. Bogdonoff and Dr J. P. 
Dussauge. 

Appendix. Algorithm sensitivity and performance 
The present conditional-sampling algorithm has been tested for sensitivity to 

variations of the threshold settings. More precisely the effects of these variations on 
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FIGURE 19. Typical probability-density function of the pressure fluctuations in the 
intermittent region. 

14 

0 

FIGURE 20. Effects of threshold variations on the probability-density function of the periods of 
the shock-wave oscillation: 0, AThJTh, = -0.5; 0,  ATh,/Th, = 0 (nominal value); +, 
AThJTh, = + 1.0. Arrows show mean values. 

the intermittency and on the p.d.f. of the time periods and frequencies have been 
systematically studied. The threshold values have been varied about their nominal 
settings by more than 100 %. Nominal values are those which show less dependence 
of y on Th, and Th,. In  ideal cases aylaTh = 0 for a broadband of threshold 
variation. The results of the present investigation are shown in figure 18. For 100 yo 
variation of Th, above the nominal value there is only an 11 % reduotion of y.  
For variations of Th, of more than - 50 % of its nominal value the increase in y is 
much more than 11 yo and an examination of the intermittency function by eye shows 
that this picture is rather unrealistic. Variation of the time-derivative threshold Th, 
has a much smaller effect on y than the level threshold Th,. The above method of 
determining the threshold settings involves only small ambiguities; on the other 
hand, choosing the free-stream fluctuation level can cause some serious problems. 
This is demonstrated in figure 19 where a typical p.d.f. of the amplitude of the 
pressure fluctuations in a highly intermittent region is plotted. Such a p.d.f. can be 
considered as a 'superposition' of two p.d.f.'s with different means and standard 
deviations but with a large degree of overlapping. Therefore by setting Th, at 3a, 
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FIQURE 21. Effects of threshold variations on the probability-density function of the frequencies 
of the shock-wave oscillation (symbols as in figure 20). 

-0.5 

W o e O e  0 

-0.5 1 

0 ‘  
-0.5 0 0.5 

ATh 
Th 
- 

1 

FIQURE 22. Effects of threshold variation on the zonal me%n $,, and zonal r.m.s. pressure 
fluctuations Z,, about p,,. 

all the ‘overlapping ’ common region is then considered as belonging to the upstream 
conditions. This could be the reason why Dolling & Or’s (1983) intermittency profiles 
are considerably lower than the present ones. The reader is referred to the work by 
Haverbeke, Wood & Smits (1979) for more details on the ambiguities in conditional- 
sampling techniques. The effect of the threshold variations on the p.d.f.’s of periods 
is shown in figure 20. The most probable value seems to be unaffected by any variation 
of Th, while the mean values can be affected by 13 %, roughly, for a 50 % variation 
of Th,. Similar are the effects of f 50 % variation of Th, on the p.d.f. of frequencies 
shown in figure 21. For a + 100 % variation of Th, a drastic change in mean value 
was observed : mean frequency doubled although y remained practically unchanged. 
This is not surprising since the algorithm in some sense behaves like a band-pass filter. 
This also means that the mean frequency is very sensitive to changes in Th,. 

The sensitivity of the zone pressure fluctuations ZU about the zone mean value & 
to threshold variations is demonstrated in figure 22. It appears that tYu is much more 
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sensitive to changes in thresholds than 3u or y. A 25 yo increase of Th, causes a 25 yo 
increase in Zu and only a 6 % increase in fiu. 

- 
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